Banksia sessilis the forgotten food

Will Stock, Teagan Johnston, Peter Mawson, Hugh Finn, Leonie Valentine

and many more

Distribution of Banksia in SW WA is same distribution as cockatoos.

Distribution of Banksia spp in Australia

From: Groom 2010

Comparison of seed pod biomass with Proteaceae of South Africa shows huge difference. No need for mechanical protection in South Africa. No bird species of cockatoo size

Infructescence to seed biomass ratios

Locations of predominant activities Feed and Roost-Rest point samples by habitat type. Data from 42 flock follows from Feb-May 2009

Habitat Type	No. of point samples (%)							
	PDA: Feed (n = 145)	PDA: Roost-Rest (n = 156)						
Pine plantation	66	55						
Market garden	36	0						
Homestead	5	41						
Modified land	1	0						
Banksia woodland	12	3						
Tuart woodland	3	36						
Other woodland	4	21						
<i>B. sessilis</i> thicket	18	0						

Research where CBC's spend time on SCP Feb to May. Much time eating and roosting in pine plantations. Peak pine seed availability yet Carnaby's still spend time on SCP. More time spent in B sessilis than Banksia woodland.

Significant time roosting in Tuarts and other trees rather than feeding on them.

Proteaceae seeds have very high energy and nutritional values

Biggest differences is seed size ..compare B. attenuata with B. sessilis.

Although many B sessilis seed required, they form thickets so can offer good food amounts.

Nutrition Information

ÍC per

		Cotyledon					Seeds to	
Spacing	Seed Mass	Mass	Energy	Fat	Ν	Protein	Meet	
species	(g)	(% Seed	(J g ⁻¹)	(%)	(%)	(%)	FMR	
		Mass)					(726 kj d ⁻¹)	Rate from Coc
Acacia saligna	0.0185	56	22 738	15.0	5.1	26.6	3 074	et al. 2002
Banksia attenuata	0.1081	74	20 317	8.4	14.1	73.0	445	
Banksia grandis	0.0764	81	20 425	11.0	14.6	75.6	576	
Banksia littoralis	0.0214	73	20 583	8.9	14.6	75.6	2 270	
Banksia nobilis	0.0188	76	22 245	12.8	13.8	71.4	2 272	
Banksia sessilis*	0.0068	78	20 899	12.6	12.0	62.2	5 118	
Brassica napus	0.0042	81	27 436	39.1	3.6	18.6	6 313	
Corymbia calophylla	0.0985	59	24 052	26.3	7.1	36.6	523	
Eucalyptus marginata*	0.0149	68	19 750	5.1	2.0	10.5	2 475	
Hakea incrassata	0.0553	81	21 640	15.4	10.4	53.9	753	
Hakea laurina	0.0222	75	24 254	25.6	10.1	52.3	1 801	
Hakea preisii	0.0137	46	22 169	17.6	9.9	51.7	5 184	
Pinus pinaster	0.0505	40	26 905	41.5	7.4	38.2	1 346	
Pinus pinea	0.4774	9	24 766	32.2	6.3	32.5	657	
Xanthorrhoea preissii*	0.0271	56	23 115	22.8	4.4	23.0	1 159	Stock et al. 2013

We had estimates for ideal situations but what was really happening in the field in terms of Banksia seed consumption

Table 2. Average number of Banksia cones available, handled and consumed (numbers per ha) by Carnaby's Black-Cockatoos over 12 months for six species of Banksia											
	B. attenuata	B. grandis	B. ilicifolia	B. menziesii	B. prionotes	B. sessilis					
Number of quadrats at which recorded (each 1200 m ²)	27	7	11	23	5	10					
Number of reproductive stems (ha ⁻¹)	338	12	39	200	1 247	3 255					
Number of cones available (ha ⁻¹)	990	14	6949	464	1 517	281 328					
Number of cones handled (ha ⁻¹)	644	8	111	367	803	211 507					
Number of cones consumed (ha ⁻¹)	513	7	58	290	648	178 971					
% of available cones handled	65	58	16	62	53	75					
% of available cones consumed	52	50	8	62	43	64					
% of handled cones consumed	80	86	52	79	81	85					
% of handled cones consumed for seed only	46	86	51	64	71	85					
% of handled cones consumed for larvae only	22	0	1	9	5	0					
% of handled cones consumed for both seed and larvae	12	0	0	7	4	0					

Johnston et al. 2016

Banksia sessilis forms thickets

Outside of pine plantations these are some of largest flocks I have observed

Carnaby's cockatoos eat grubs and seeds. They may also feed on nectar.

Different species mature at different times of the year and grub feeding is usually out of sequence with seed maturation.

Time since last fire also determines how much food is available in the landscape.

Fig. 3. Seasonal consumption of *Banksia* cones for seed or larvae, or both (numbers per ha) by Carnaby's Black-Cockatoos across the Swan Coastal Plain. Note the different scale for the number of cones consumed for *B. sessilis*.

Table 4. Mean number of *Banksia* cones and percentage of cones consumed by Carnaby's Black-Cockatoos in relation to time since last fire (TSLF)

Results from *post hoc* Tukey-b tests are shown for *B. attenuata* where fire histories with the same superscript letter (a, b, c) are not significantly different (P > 0.05).

Species	TSLF (years)	Number of quadrats (each 400 m ²)	Mean number of stems per ha ±s.e.	Mean number of cones per ha±s.e.	Mean proportion of cones consumed ± s.e. (%)
B. attenuata	≤5	8	275 ± 52	$288 \pm 112^{\rm a}$	34 ± 0.1
	6-10	9	653 ± 184	$578 \pm 145^{a,b}$	41 ± 0.1
	11-15	12	375 ± 45	1125 ± 226^{b}	58 ± 0.1
	16-20	8	355 ± 43	$1963 \pm 579^{\circ}$	54 ± 0.1
	≥ 21	33	668 ± 114	$1368 \pm 256^{\circ}$	56 ± 0.1
B. menziesii	≤ 5	5	240 ± 106	185 ± 103	15 ± 0.1
	6-10	3	468 ± 129	358 ± 209	51 ± 0.2
	11-15	9	365 ± 77	1310 ± 206	65 ± 0.1
	16-20	8	243 ± 74	725 ± 312	50 ± 0.1
	≥ 21	23	433 ± 88	453 ± 79	60 ± 0.1
B. sessilis	≤5	5	32 770±18 693	325 ± 301	4 ± 0.0
	6-15	5	$19\ 095 \pm 8645$	1 315 053 ± 454 533	57 ± 0.1
	≥ 16	7	240 ± 72	$266\ 870 \pm 161\ 677$	78 ± 0.1

Johnston et al. 2016

Can work out seeds required to meet daily metabolic rates of the Carnabys.

However little was know about actual use so two scenarios model Ideal vs Actual.

Species	Follicles/ infructescence	Seed extracted	Larvae extracted	
B. attenuata	11.6	2.6 (22%)	0.2 (0.02%)	
B. grandis	56.3	29.1	0	
B. ilicifolia	1.3	0.6 (43%)	0	
B. menziesii	6.2	2.5 (40%)	0.1 (0.01%)	
B. prionotes	26.6	7.0 (26%)	0.01 (<0.01%)	
B. sessilis	1.2	0.7 (56%)	0	

Mean number of follicles per infructescence and number of follicles broken open by Carnaby's cockatoos for seed and insect larvae.

Number and percentage of banksia follicles that contained two, one or zero firm seeds.

_	n		Average n seeds per follicle		
Species	follicles	2 seeds	1 seed	0 seeds	(mean ± SE ⁻¹)
		(%)	(%)	(%)	
B. attenuata	916	45.7	35.7	18.6	1.27 ± 0.03
B. grandis	254	0	57.5	42.5	0.57 ± 0.03
B. ilicifolia	99	33.3	41.4	25.2	1.08 ± 0.08
B. menziesii	387	39.0	31.0	30.0	1.09 ± 0.04
B. prionotes	389	18.0	11.6	70.4	0.47 ± 0.04
B. sessilis	206	44.7	28.2	27.2	1.17 ± 0.06

Johnston et al. 2020

				Scenario 1 -Ideal	Scenario 2 – More probable
	Seed weight, energy, and number required to meet Carnaby's cockatoo field metabolic requirements		Mean number of follicles per infructescence, two seeds per follicle, all consumed by Carnaby's cockatoo	Mean number of follicles with seed extracted by Carnaby's cockatoo per infructescence using estimated number of firm seeds	
	Mean seed weight (g ± SE)	Seed energy content (kJ g ⁻¹)	<i>n</i> seeds to meet FMR (726 kJ d ⁻¹)	<i>n</i> infructescences d ⁻¹	<i>n</i> infructescences d ⁻¹
B. attenuata	0.075 ± 0.0036	20.32	476	21	147
B. grandis	0.045 ± 0.0023	20.43	790	7	47
B. ilicifolia	0.037 ± 0.0026	21.36	919	342	1 351
B. menziesii	0.053 ± 0.0014	22.27	615	50	225
B. prionotes	0.019 ± 0.0003	22.91	1 668	31	508
B. sessilis	0.007 ± 0.0005	20.90	4 962	2 121	6 525

If we are spending money on offsets which is most effective?

	Energy Density	Ratio	Refs	Assumptions
	kJ/ha			
<i>Banksia attenuata</i> woodland	50000	1	Johnson MSc	1500 infruct/ha = good habitat
<i>Pinus pinaster</i> plantation	200000	4	Stock et al. 2013	Based on Gnangara pine data
Macadamia Orchard	39130000	783	Estimated	Based on 100 trees/ha, yield 13 kg/tree, 30kJ/g
Pecan Orchard	52920000	1058	Estimated	Based on 100 trees/ha, yield 18 kg/tree, 29kJ/g
Almond Orchard	35000000	700	Estimated	Based on 100 trees/ha, yield 18 kg/tree, 25kJ/g

To get 50000 kj h⁻¹ we need 1500 Banksia attenuata or 252106 Banksia sessilis infructescences

Table 2. Average number of *Banksia* cones available, handled and consumed (numbers per ha) by Carnaby's Black-Cockatoos over 12 months for six species of *Banksia*

	B. attenuata	B. grandis	B. ilicifolia	B. menziesii	B. prionotes	B. sessilis
Number of quadrats at which recorded (each 1200 m ²)	27	7	11	23	5	10
Number of reproductive stems (ha ⁻¹)	338	12	39	200	1 247	3 255
Number of cones available (ha ⁻¹)	990	14	6949	464	1 517	281 328
Number of cones handled (ha ⁻¹)	644	8	111	367	803	211 507
Number of cones consumed (ha ⁻¹)	513	7	58	290	648	178 971
% of available cones handled	65	58	16	62	53	75
% of available cones consumed	52	50	8	62	43	64
% of handled cones consumed	80	86	52	79	81	85
% of handled cones consumed for seed only	46	86	51	64	71	85
% of handled cones consumed for larvae only	22	0	1	9	5	0
% of handled cones consumed for both seed and larvae	12	0	0	7	4	0

Alternative food like canola has proven to cause paralysis (Kris Warren research at Murdoch Uni)